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Abstract. We show that for any sufficiently big semi-brick A of the 1-dimensional Heisen-

berg group H over the finite field Fp, the 4-fold product set A · A · A · A contains at least

|A|/p many cosets modulo some non trivial subgroup of H1.

1. Introduction

Let H be the Heisenberg group on the prime field F with p elements and denote by

[x, y, z] =


1 x z

0 1 y

0 0 1

 , x, y, z ∈ F

the elements of H. The product rule in H runs as follows:

[x, y, z] · [x′, y′, z′] = [x+ x′, y + y′, xy′ + z + z′],

[x, y, z]−1 = [−x,−y, xy − z].

The Heisenberg group possesses an interesting structure in which we can prove that in general

there is no good model for a subset A with a small square set A · A (see [2] and also [4]),

unlike for subsets of Abelian group. Here by a good s-model for A we mean a subset A′

of a finite group G′ such that A is s-Freiman isomorphic to A′ and |G′| ≪s,K |A′| where

K = |A · A|/|A| is the squaring ratio (see [4] for more details).

The famous Freiman theorem for a given subset A of an abelian group G asserts that

whenever A · A has its cardinality close to that of A, then A has a structure (cf. [3]). In

the non-abelian Heisenberg group H this result is no longer true. Nevertheless under the

stronger condition that |A ·A ·A| ≤ K|A| with A ⊂ H, Tao obtains in [7] a structure result

for such subsets A. As a dual problem in the Heisenberg particular situation, we can ask the

following question: is it true that for a not too small subset A of H, the product set A · A

necessarily contains some non-trivial substructure of H ?
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A related question emerged in SL2(F) in [6] (see also [1]) where it is proved that under

some condition on A ⊂ SL2(F), namely A is a not too big generating subset of SL2(F), one

has |A · A · A| > |A|1+ε.

Nevertheless, the structure or even the size of the square set A · A cannot be handled in

general. We will restrict our attention to subsets that will be called semi-bricks : for U ⊂ F2

and Z ⊂ F we define the so called semi-brick A in H by

A = {[x, y, z] such that (x, y) ∈ U, z ∈ Z}.

For denoting this set we simply write A = U o Z. According to this notation we have

H = F2 o F and [x, y,F] = {(x, y)}o F.

We may eventually expect that if A is a sufficiently big brick in H, that is a subset of the

form (X × Y )o Z, then A · A contains a substructure formed by a rich collection of cosets

modulo the subgroup [0, 0,F]. In fact we proved in [5] such a result in the n-dimensional

Heisenberg group when n is large enough, namely n ≥ 5. Moreover for any arbitrary big

subset A ofH, we also have a rich substructure for the 6-fold product set A6 = A·A·A·A·A·A

(see [4]). In what follows we focus on semi-bricks.

Our main result is the following.

Theorem 1. Let A = U o Z be a semi-brick in H. If |A| ≥ 2−1/3p8/3 then the four-fold

product set A · A · A · A contains at least |U |
(
1− p4√

2|A|3/2

)
cosets of the type [x, y,F].

This theorem will be proved in the last section, based on some partial results shown in

the second section.

2. Preliminary results

2.1. For a = [a1, a2, a3], b = [b1, b2, b3] and c = [c1, c2, c3] we have the product rule

abca−1 = [b1 + c1, b2 + c2, b3 + c3 + a1(b2 + c2)− a2(b1 + c1) + b1c2].

We fix a semi-brick A = U o Z in H and a subset Ã = Ũ o Z of A being also a semi-brick

in H ; it means that Ũ ⊂ U . In order to show that Ã · A · A · Ã−1 contains many cosets

of [0, 0,F] we will restrict our consideration to elements of this product set of the particular

form abca−1 with a ∈ Ã, b, c ∈ A. For fixed x, y, t we denote by R(x, y, t) the number of

solutions to the system

[x, y, t] = abca−1, a ∈ Ã, b, c ∈ A.

In the sequel Ã = A will be a natural choice but we shall see in the concluding section that

a more appropriate choice for Ã will help us to obtain our main result Theorem 1.
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It is then obvious that R(x, y, t) is the number of solutions to the equationt = b3 + c3 + a1y − a2x+ (b1y − b1b2),

(a1, a2) ∈ Ũ , (b1, b2) ∈ Vx,y, b3, c3 ∈ Z,

where x = b1 + c1, y = b2 + c2 and Vx,y = U ∩ ((x, y)− U).

Letting ep(θ) = exp(2iπθ/p), one has

(1) R(x, y, t) =
1

p

∑
r

∑
(a1,a2)∈Ũ
(b1,b2)∈Vx,y

(b3,c3)∈Z2

ep

(
r(b3 + c3 + a1y − a2x+ b1y − b1b2 − t)

)
.

We let

∆(x, y) = max
t

∣∣∣∣∣R(x, y, t)− |Ũ ||Vx,y||Z|2

p

∣∣∣∣∣ ,
after observing that |Ũ ||Vx,y ||Z|2

p
is the contribution of r = 0 in the right-hand side of (1).

Then

∆(x, y) ≤ 1

p

∑
r ̸=0

|Ẑ(r)|2
∣∣∣ ∑

(a1,a2)∈Ũ
(b1,b2)∈Vx,y

ep

(
r(a1y − a2x+ b1y − b1b2)

)∣∣∣
≤ 1

p

∑
r ̸=0

|Ẑ(r)|2|Vx,y|
∣∣∣ ∑
(a1,a2)∈Ũ

ep

(
r(a1y − a2x)

)∣∣∣
< |Z||Vx,y|max

r ̸=0

∣∣∣ ∑
(a1,a2)∈Ũ

ep

(
r(a1y − a2x)

)∣∣∣,
by Parseval inequality.

In this section we assume that rŨ = Ũ for any r ̸= 0. Then the sum in the right-hand

side does not depend on r. Hence in this case

(2)
∑
x,y

∆(x, y) < |Z|
∑
x,y

|Vx,y|
∣∣∣ ∑
(a1,a2)∈Ũ

ep

(
a1y − a2x

)∣∣∣
and by Cauchy-Schwarz

(3)
∑
x,y

∆(x, y) < |Z|
(∑

x,y

|Vx,y|2
)1/2

×
(∑

x,y

∑
(a1,a2)∈Ũ
(a′1,a

′
2)∈Ũ

ep

(
(a1 − a′1)y − (a2 − a′2)x

))1/2

By the definition of Vx,y, one has |Vx,y| ≤ |U | hence

(4)
∑
x,y

|Vx,y|2 ≤ |U |
∑
x,y

|Vx,y| = |U |3,
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and that the last sum in the right-hand side of equation (3) is equal to p2|Ũ |. Hence∑
x,y

∆(x, y) < p|Z||U |3/2|Ũ |1/2.

If for any x, y, there exists t = t(x, y) such that R(x, y, t) = 0 then

∆(x, y) ≥ |Ũ ||Vx,y||Z|2

p

and we would have ∑
x,y

|Ũ ||Vx,y||Z|2

p
< p|Z||U |3/2|Ũ |1/2

which implies

|Ũ ||U |2|Z|2 < p2|Z||U |3/2|Ũ |1/2.

One gets a contradiction if |Ũ ||U ||Z|2 ≥ p4 or equivalently |Ã||A| ≥ p4.

We thus have proved the following partial result.

Proposition 2. Let A = U oZ a semi-brick in H and assume that Ã is at the same time a

subset of A and a semi-brick Ã = ŨoZ such that rŨ = Ũ for any r ∈ F\{0}. If |A||Ã| ≥ p4

then Ã · A · A · Ã−1 contains a coset [x, y,F].

2.2. We will now modify our argument in order to avoid the strong assumption rŨ = Ũ ,

r ̸= 0. From equation (3) and (4), one gets∑
x,y

∆(x, y) ≤ |Z||U |3/2 ×
(∑

x,y

max
r ̸=0

∑
(a1,a2)∈Ũ
(a′1,a

′
2)∈Ũ

ep

(
r((a1 − a′1)y − (a2 − a′2)x)

))1/2

Then by replacing the maximum on r ̸= 0 by the summation on any r ̸= 0 we get∑
x,y

∆(x, y) < |Z||U |3/2 ×
(
1

2

∑
x,y

∑
r ̸=0

∑
(a1,a2)∈Ũ
(a′1,a

′
2)∈Ũ

ep

(
r((a1 − a′1)y − (a2 − a′2)x)

))1/2

where the factor 1/2 comes from the fact the modulus of a single term in the summation

over r ̸= 0 is the same as the modulus of its conjugate. By interchanging the sum on x, y

and the sum on r we easily deduce in the same way as in the previous section

(5)
∑
x,y

∆(x, y) <
|Z||U |3/2((p− 1)p2|Ũ |)1/2√

2
<

p3/2|Z||U |3/2|Ũ |1/2√
2

.

As above we conclude that we cannot have ∆(x, y) ≥ |Ũ ||Vx,y ||Z|2
p

for any x, y if

√
2|Ũ ||U |2|Z|2 ≥ p5/2|Z||U |3/2|Ũ |1/2.

Hence the following result
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Proposition 3. Let A = UoZ a semi-brick in H and assume that Ã = ŨoZ is a semi-brick

which is a subset of A. If 2|A||Ã| ≥ p5 then Ã · A · A · Ã−1 contains a coset [x, y,F].

By letting E :=
∑

x,y |Vx,y|2 the energy of the set U which already appeared in (4), we

showed in fact that if Ã ·A ·A · Ã−1 does not contain any coset [x, y,F] then
√
2|Ũ ||U |2|Z|2 <

p5/2|Z|E1/2|Ũ |1/2. Hence

(6) E >
2|Ũ ||U |4|Z|2

p5
.

Instead of the simple deviation maxt

∣∣∣R(x, y, t)− |Ũ ||Vx,y ||Z|2
p

∣∣∣ it could provide an advantage

to consider the following quadratic mean value

σ(x, y) :=
∑
t

(
R(x, y, t)− |Ũ ||Vx,y||Z|2

p

)2

and σ =
∑

x,y σ(x, y). We now assume that for any x, y there is at least one t such that

R(x, y, t) = 0. Then by (6)

(7) σ ≥ |Ũ |2|Z|4

p2
· E >

2|Ũ |3|U |4|Z|6

p7
.

On the other hand

σ(x, y) =
∑
t

(
1

p

∑
r ̸=0

∑
(a1,a2)∈Ũ
(b1,b2)∈Vx,y

b3,c3∈Z

ep(r(a1y − a2x+ b1y − b1b2 + b3 + c3 − t))

)2

=
1

p

∑
r ̸=0

( ∑
(a1,a2)∈Ũ

ep(r(a1y − a2x))
)2( ∑

(b1,b2)∈Vx,y

ep(r(b1y − b1b2))
)2( ∑

b3,c3∈Z

ep(r(b3 + c3))
)2

after developing and summing on t. Hence

σ(x, y) ≤ |Vx,y|2

p

∑
r ̸=0

|Ẑ(r)|4
( ∑

(a1,a2)∈Ũ

ep(r(a1y − a2x))
)2
.

Since |Vx,y| ≤ |U | we obtain by developing the square of the sum over (a1, a2) and summing

over x and y

(8) σ ≤ p|U |2|Ũ |
∑
r ̸=0

|Ẑ(r)|4 ≤ p2|U |2|Ũ ||Z|3.

Together with (7), we get

2|Ũ |3|U |4|Z|6

p7
< p2|U |2|Ũ ||Z|3.

We thus have slightly improved Proposition 3:

Proposition 4. Let A = UoZ a semi-brick in H and assume that Ã = ŨoZ is a semi-brick

which is a subset of A. If 2|A|2|Ã|2 ≥ p9|Z| then Ã · A · A · Ã−1 contains a coset [x, y,F].
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We could take Ã = A in Proposition 3. This does not imply that A4 contains a coset and

does not give any lower bound for the number of such cosets. We will treat these questions

in the next section.

3. Proof of the main result

Here we assume that A is a semi-brick satisfying the hypothesis of Theorem 1.

3.1. By the averaging argument there exists an [x0, y0, z0] such that

(9)
∣∣A ∩ (A−1 · [x0, y0, z0])

∣∣ ≥ |A|2

p3
.

Let Ũ the image of the intersection A ∩ (A−1 · [x0, y0, z0]) by the projection on the first two

coordinates and write Ã = Ũ o Z. Clearly Ũ ⊂ U and

A ∩ (A−1 · [x0, y0, z0]) ⊂ Ã and |Ã| ≥ |A|2

p3
.

We apply Proposition 3 to A and Ã ⊂ A. It follows that if 2|A|3 ≥ p8 then Ã · A · A · Ã−1

contains a coset [x, y,F] hence Ã · A · A · Ã−1[x0, y0, z0] contains a coset [x + x0, y + y0,F].

But

Ã · A · A · Ã−1[x0, y0, z0] ⊂ Ã · A · A · A−1[x0, y0, z0] ⊂ Ã · A · A · Ã ⊂ A4,

hence the following proposition.

Proposition 5. Let A = U o Z a semi-brick in H. If 21/3|A| ≥ p8/3 then A · A · A · A

contains a coset [x1, y1,F].

3.2. We keep the notation of the preceding paragraph. Let S be the set of pairs (x, y) such

that there exists t with R(x, y, t) = 0. Then for those x, y

∆(x, y) ≥ |Ũ ||Vx,y||Z|2

p
.

Denote by S the complementary set of S in F2. Then by (5)∑
(x,y)∈S

|Ũ ||Vx,y||Z|2

p
≤
∑

(x,y)∈S

∆(x, y) ≤
∑
x,y

∆(x, y) <
p3/2|Z||Ũ |1/2|U |3/2√

2
.

Since ∑
(x,y)∈S

|Vx,y| =
∑
x,y

|Vx,y| −
∑

(x,y)∈S

|Vx,y| = |U |2 −
∑

(x,y)∈S

|Vx,y|

and |Vx,y| ≤ |U |, it follows that

|U ||S| > |U |2 − p5/2|U |3/2√
2|Z||Ũ |1/2

= |U |2
(
1− p5/2√

2|Z||Ũ |1/2|U |1/2

)
.
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Hence

|S| > |A|
|Z|

(
1−

√
p5

2|A||Ã|

)
≥ |A|

|Z|

(
1− p4√

2|A|3/2

)
since |Ã| ≥ |A|2/p3.

This completes the proof of Theorem 1.

3.3. We assume here that A is such A · A · A · A does not contain any coset [x, y,F]. By

Proposition 4 and the arguments of subsection 3.1, we infer

(10) 2|A|2|Ã|2 < p9|Z|

where Ã is any set of the kind Ã = Ũ ′oZ, Ũ ′ is the projection on the first two coordinates of

some A′ ∩ (A′−1 · [x0, y0, z0]) with A′ ⊂ A. With the choice of Ã that we made in subsection

3.1, we get

(11) 2|A|6 < p15|Z|.

Hence the more |Z| is small, the more the above condition is sharp. Now from (6) we obtain

(12) 2|A||Ã| < p5

K
,

where K is defined by K = |U |3/E and E denotes the energy of the set U . With the same

selection of Ã we obtain

(13) 2|A|3 < p8

K
,

When K is big this condition becomes stronger and on the other hand for small K we could

apply the Balog-Szemerédi-Gowers Theorem (see [8, pages 78-79]). We infer that there is an

absolute constant C > 1 (C = 5 is an admissible value) and two subsets U ′, U ′′ of U such

that

|U ′|, |U ′′| ≫ K−1|U | and |U ′ + U ′′| ≪ KC |U |.

We write A′ := U ′oZ ⊂ A and A′′ := U ′′oZ ⊂ A. Arguing as in subsection 3.1, we deduce

that there exists [x′
0, y

′
0, z

′
0] ∈ A′ · A′′ such that∣∣A ∩ (A−1 · [x′

0, y
′
0, z

′
0])
∣∣ ≥ ∣∣A′′ ∩ (A′−1 · [x′

0, y
′
0, z

′
0])
∣∣ ≥ |A′||A′′|

|A′ · A′′|
.

Letting Ã = A ∩ (A−1 · [x′
0, y

′
0, z

′
0]) and noticing that A′ · A′′ ⊂ (U ′ + U ′′) o F one deduces

|Ã| ≫ K−C−2|A||Z|/p. Hence by (10), |A|4|Z| ≪ K2C+4p11. Multiplying this inequality

together with (11) we get the condition |A|10 ≪ K2C+4p26, namely

|A|5 ≪ KC+2p13.
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Together with (13) we may eliminate the parameter K: this gives

|A|11+3C ≪ p29+8C ,

hence

|A| ≪ p(29+8C)/(11+3C).

We may notice that the exponent grows in the interval (29
11
, 8
3
) when C ranges from 0 to infin-

ity. This provides an improved version of Proposition 5 which plainly yields a corresponding

slight improvement on Theorem 1. Letting C = 5 we get the following result.

Proposition 6. Let A = U oZ a semi-brick in H. If |A| ≫ p69/26 then A ·A ·A ·A contains

at least one coset [x, y,F].

3.4. From Theorem 1 we obtain that for A = UoZ with |A| ≥ 2−1/3p8/3, the product set A4

contains at least |A|/pmany different cosets [x, y,F] if |Z| ≤ p/2. If |Z| > p/2 then Z+Z = F

and it is not hard to conclude to the same result since in this case A · A = 2U o F plainly

contains at least |2U | ≥ |U | ≥ |A|/p many cosets [x, y,F]. Indeed for any [u, v, t] ∈ 2U o F,

it is possible to find (x, y) and (x′, y′) both in U such that u = x + x′ and v = y + y′. We

then select z, z′ ∈ Z such that z + z′ = t − xy′, which is possible by our extra assumption

Z + Z = F. Finally [x, y, z] · [x′, y′, z′] = [u, v, t] with [x, y, z], [x′, y′, z′] ∈ A as requested.

3.5. By considering the semi-brick A = UoF, with |U | ≫ p5/3 we observe that A4 = 4UoF

hence A4 is the union of |4U | cosets [x, y,F]. With U = I×F where I is an interval in F, one

has |4U | = 4|U | − 3. Hence A4 is the union of 4|U | − 3 many cosets modulo the subgroup

[0, 0,F]. Thus according to Theorem 1 we can ask the question of finding the optimal number

of cosets of [0, 0,F] contained in A4 where A = U o Z is a semi-brick which is big enough.

By the above discussion, this number is less than 4|U |−3 and bigger than (1− ϵ)|U | at least

for p8/3/21/3 ≤ |A| ≤ p3−η.

Acknowledgement. The authors warmly thank the anonymous referee who pointed out that

our Propositions 3 and 5 could be refined by Propositions 4 and 6.
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