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ABSTRACT. We derive a generalization of a theorem of Raimi prov-
ing there is a partition of natural numbers with given densities of
classes which meet structured translates of any other class of a
partition of natural numbers.
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1. INTRODUCTION

A branch of combinatorial analysis — called Ramsey theory — investi-
gates partitions of certain structures. In [1], p.180, Th 11.15] Hindman
deals with the intersecting properties of a finite partition of the set N
of positive integers. He gives an elementary proof for Raimi’s theorem
[2] which reads as follows:

Theorem 1.1. There exists EE C N such that, wheneverr € N and N =
Ui_, Di there exist i € {1,2,...,r} and k € N such that (D; + k)N E
is infinite and (D; + k) \ E is infinite.

Hindman shows that the set E of natural numbers whose last non-
zero entry in their ternary expansion is 1 satisfies this condition. Raimi’s
original proof used a topological result.

The aim of this paper is to generalize Raimi’s Theorem which will
be done in the next section.

2. A GENERALIZATION OF RAIMI’S THEOREM

Let N be the set of non-negative integers. Let A C N and let b € N.
Then A+b={a+b:aec A}. Given a sequence {x,}°°, in N,

FS({zn}21) = {D>_,cp Tn : F is a finite nonempty subset of N} .
[ AN L n]l

’

For A C Nlet us define the lower density of A by d(A) = lim inf

n—oo n
he u i ANl
the upper density by d(A) = limsup M

d(A) = lim ANl

n—00 n

, and the density by

if the limit exists. Given a real number x we
1



2 ON INTERSECTING PROPERTIES OF PARTITIONS OF INTEGERS

denote by (x) the fractional part of x. That is, (z) = z — |z]|. Given
a subset A of R, we write p(A) for the outer Lebesgue measure of A.

Now we state a generalization of Raimi’s theorem.

Theorem 2.1. Let A C N such that there is a positive irrational v for
which {{yx) : x € A} is dense in [0,1). Letr € N and let ay, aa, . .., a,
be positive real numbers such that Y ;_, o; = 1. There exists a disjoint
partition N = Ji_, such that

(1) for everyi € {1,2,...,r}, d(E;) = o; and

(2) for each t € N and each partition A = U§:1 F;, there exist m €
{1,2,...,t} and a sequence {x,}:>, in N such that for every h €
FS{z,}02,) and every i € {1,2,...,r}, (F, + h) N E; is infinite.

Notice that Raimi’s theorem follows from the case r = 2.

First we prove a technical lemma.

Lemma 2.2. Let {I,}2, be a sequence of pairwise disjoint intervals in
0,1) and assume that for every € > 0 there exist a € [0,1) and m € N
such that ;.1 In C (a,a+¢). Let~y be a positive irrational number,

and let E={z e N: (yz) e U 2, I,}. Then d(E) =3, p(1y,).

Proof of Lemma 2.1. Recall that if v is a nonzero irrational number,
then {(vyx) : z € N} is uniformly distributed mod 1. That is, if 0 < a <
b<1 thend({x € N: (yz) € (a,b)}) =b—a. Let a = >~ u(l,). Let
e > 0 be given and let £ € N be an integer such that ZZ:1 u(l,) > a—e.
Choose an a € [0,1) and m € N such that |J;”, .., I, € (a,a +¢). We
may presume that m > k.

Let ' ={z € N: (yx) e U, [,} and let G = {x € N: (yz) €
U, I,U(a,a+¢)}. Now |J", I,U(a, a+e¢) is a finite union of pairwise
disjoint intervals of total length 6 < >°™ | u(1,,) +¢. Therefore we have
by the uniform distribution of {(yz) : = € N} that d(F) =", u(I,)
and d(G) = 6. Thus d(E) > d(F) > YF_ u(I,) > a — ¢ and d(E) <
d(G) <> " () +e<a+e. O

Proof of Theorem 2.2. Take a positive irrational v for which {(yz) :
x € A}isdensein [0,1). Let sp = 0 and inductively fori € {1,2,...,r},
let s, =s;.1+a; (sos,=1). Forie{1,2,...,r} and j € N, let

1 Si—1 1 S;
Ji,j— 1_§+ﬁ’1_2_]+2j+1> .

Forie {1,2,...,r} let J; = U2, Jij and let E; = {z € N: (yz) €

Ji}. Then pu(J;) =372, % = o; so by the lemma, d(E;) = «;.
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Now let t € N and let A = U;Zl F;. We claim

Fact: For any c,d with 0 < ¢ < d <1 there exists m € {1,2,...,t}
and there exist a,b, with ¢ < a < b < d such that {(yx) : v € F,,} is
dense in (a,b).

To see this, suppose not. Let ag = ¢ and by = d. Inductively let j €
{1,2,...,t}. Then {(yz) : x € F}} is not dense in (a;_1,bj_1) so pick
aj,bj with aj—1 < a; < bj < bj—l such that {<’}/I‘> A F]} N (aj, b]) =
(). When this process is complete one has that (a;,b;) N Uj.:l{(fyx) :
x € F;} = 0. That is, (a,b;) N {(yz) : x € A} =0, a contradiction.

Now for n € N, we inductively choose a,, b,, and m(n) such that
m(n) € {1,2,...,t}, 0 <a, <b, <1, {{(yx) : © € Fpn)} is dense in

n — An n — On

;and by — apgpr < 5

Choose m(1) € {1,2,...,t} and ay,b; such that 0 < a; < by < 1
and {(yx) : x € Fpa)} is dense in (a;,b1). Given n € N and a,

and by, letc:max{bml_ bn;an} andd:min{l,c—f—bngan}.

Apply Fact to choose m(n + 1) € {1,2,...,t} and a,41,b,y1 with
¢ < Gppr < bpyr < d such that {(yz) : @ € Fyny1)} is dense in
bn — an

(armbn)a bn S An41y Qp41 2 1 -

(@ps1,0p41). Then b, < ¢ < apyq, 1 — < ¢ < ayy1, and

n — An bn_an

bn+1§d§0+ San—f—l‘f‘

Now take m € {1,2,...,t} such that D = {n : m(n) = m} is infinite
and enumerate D in increasing over as {n(k)}2,. For each k € N, let
i = anky and di = by(r). Then for each k, {(yx) : € F,,} is dense in

dy, — cx, < di, — cx, F
yand dgyq —cpq < . For

(Ckadk)v dk < Ck+1, Ck+1 > 1—

each k € N pick z; € N such that (yzy) € (1 —dy, 1 — ¢ — dy; ; Ck).

di, — cx

Notice that for any k£ € N and v € w, dpyy — Crpo < 5

We show now by induction on v € N that

HCN, |H|=v,and k =min H =

dp — ¢
= (YD ey T1) € (1—dk,1—ck— kzv k) . (xx)

When v = 1, (**) holds directly, so assume that v > 1 and (&)

holds for v — 1. Let H C N with |H| = v, let k = min H, let u =

di, — ¢

max [, and let G = H \ {u}. Then (y> .o z) <1—c¢ — ’;v,lk
dpv—2 = Chro—2 _ Ak = Ck

and (yz,) < 1 —c, < 1—cprp1 < 1 S T %0
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d—C d—C d_C
(Y2 ieq o) +{(ymy) < 1—cp — 2@71k+ kzv L P

Since (7D e 1) + (yzu) < 1, we have that (y> .o z1) + (yzu) =
(v 1em 1) and so (xx) is established.

Now let H be a finite nonempty subset of N and let i € {1,2,...,7}.
We show that (Fy, + > ,c #1) N E; is infinite. Let k& = min H. Then

by (#%), (YD jeg @) € (1 —dp,1 —cp) s0 cp + (YD ey 1) < 1 <
1
di+ (v ey 7). Pick j € N such that 1 — 25> ok + ('yz x;). Then

leH
ck<1———72xl ———vle+—<dkand
leH leH

9j+1
{{(vy) : y € F,,} is dense in (ck, dr) and so

R LIRS 3RS R RTEE SR IR .

led leH

is infinite.

To complete the proof it suffices to show that if y € K, then y +
Y e T € E;. Indeed, given y € K, (yvy) + (v ey 1) € Jij and
) + (v e ) < 1so (yy) + (v Diem @) = (VY + Xien 1)) s0
Y+ ey ¥ € Ej as required.

O

3. FURTHER PROBLEMS AND RESULTS

Theorem 2.2 implies that for every ¢ partition of the set N = U;zl F;
not just one translation h of some F,, meets £, : (j = 1,...,7) in
an infinite set, rather each translations do, given h from an additive
"cube”.

A natural question is to ask the following: Is any infinite set {z,,}°° ;,
such that Theorem 2.2 remains true if we want that the elements h in-

cluded in FS({z,}22,) U FP({x,}52,), where FP({z,}> ) is a mul-
tiplicative cube defined by

FS({xp}p21) = {I],cp @n : F is a finite nonempty subset of N} ?

Our combinatorial approach is not enough to prove this extension.
Maybe some tools from ergodic theory would work.
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