ON INTERSECTING PROPERTIES OF PARTITIONS OF INTEGERS

NORBERT HEGYVÁRI

ABSTRACT. We derive a generalization of a theorem of Raimi proving there is a partition of natural numbers with given densities of classes which meet structured translates of any other class of a partition of natural numbers.

2000 Mathematics Subject Classification:11B75,05D10. Keywords: Ramsey-type intersection problem

1. INTRODUCTION

A branch of combinatorial analysis – called Ramsey theory – investigates partitions of certain structures. In [1], p.180, Th 11.15] Hindman deals with the intersecting properties of a finite partition of the set \mathbb{N} of positive integers. He gives an elementary proof for Raimi's theorem [2] which reads as follows:

Theorem 1.1. There exists $E \subseteq \mathbb{N}$ such that, whenever $r \in \mathbb{N}$ and $\mathbb{N} = \bigcup_{i=1}^{r} D_i$ there exist $i \in \{1, 2, ..., r\}$ and $k \in \mathbb{N}$ such that $(D_i + k) \cap E$ is infinite and $(D_i + k) \setminus E$ is infinite.

Hindman shows that the set E of natural numbers whose last nonzero entry in their ternary expansion is 1 satisfies this condition. Raimi's original proof used a topological result.

The aim of this paper is to generalize Raimi's Theorem which will be done in the next section.

2. A GENERALIZATION OF RAIMI'S THEOREM

Let \mathbb{N} be the set of non-negative integers. Let $A \subseteq \mathbb{N}$ and let $b \in \mathbb{N}$. Then $A + b = \{a + b : a \in A\}$. Given a sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{N} ,

 $FS(\{x_n\}_{n=1}^{\infty}) = \{\sum_{n \in F} x_n : F \text{ is a finite nonempty subset of } \mathbb{N}\}.$

For $A \subseteq \mathbb{N}$ let us define the lower density of A by $\underline{d}(A) = \liminf_{n \to \infty} \frac{|A \cap [1, n]|}{n}$, the upper density by $\overline{d}(A) = \limsup_{n \to \infty} \frac{|A \cap [1, n]|}{n}$, and the density by $d(A) = \lim_{n \to \infty} \frac{|A \cap [1, n]|}{n}$ if the limit exists. Given a real number x we

2 ON INTERSECTING PROPERTIES OF PARTITIONS OF INTEGERS

denote by $\langle x \rangle$ the fractional part of x. That is, $\langle x \rangle = x - \lfloor x \rfloor$. Given a subset A of \mathbb{R} , we write $\mu(A)$ for the outer Lebesgue measure of A. Now we state a generalization of Paimi's theorem

Now we state a generalization of Raimi's theorem.

Theorem 2.1. Let $A \subseteq \mathbb{N}$ such that there is a positive irrational γ for which $\{\langle \gamma x \rangle : x \in A\}$ is dense in [0, 1). Let $r \in \mathbb{N}$ and let $\alpha_1, \alpha_2, \ldots, \alpha_r$ be positive real numbers such that $\sum_{i=1}^r \alpha_i = 1$. There exists a disjoint partition $\mathbb{N} = \bigcup_{i=1}^r$ such that

(1) for every $i \in \{1, 2, ..., r\}, d(E_i) = \alpha_i$ and

(2) for each $t \in N$ and each partition $A = \bigcup_{j=1}^{t} F_j$, there exist $m \in \{1, 2, \ldots, t\}$ and a sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{N} such that for every $h \in FS(\{x_n\}_{n=1}^{\infty})$ and every $i \in \{1, 2, \ldots, r\}$, $(F_m + h) \cap E_i$ is infinite.

Notice that Raimi's theorem follows from the case r = 2.

First we prove a technical lemma.

Lemma 2.2. Let $\{I_n\}_{n=1}^{\infty}$ be a sequence of pairwise disjoint intervals in [0,1) and assume that for every $\varepsilon > 0$ there exist $a \in [0,1)$ and $m \in \mathbb{N}$ such that $\bigcup_{n=m+1}^{\infty} I_n \subseteq (a, a+\varepsilon)$. Let γ be a positive irrational number, and let $E = \{x \in \mathbb{N} : \langle \gamma x \rangle \in \bigcup_{n=1}^{\infty} I_n\}$. Then $d(E) = \sum_{n=1}^{\infty} \mu(I_n)$.

Proof of Lemma 2.1. Recall that if γ is a nonzero irrational number, then $\{\langle \gamma x \rangle : x \in \mathbb{N}\}$ is uniformly distributed mod 1. That is, if $0 \le a < b \le 1$, then $d(\{x \in \mathbb{N} : \langle \gamma x \rangle \in (a, b)\}) = b-a$. Let $\alpha = \sum_{n=1}^{\infty} \mu(I_n)$. Let $\varepsilon > 0$ be given and let $k \in \mathbb{N}$ be an integer such that $\sum_{n=1}^{k} \mu(I_n) > \alpha - \varepsilon$. Choose an $a \in [0, 1)$ and $m \in \mathbb{N}$ such that $\bigcup_{n=m+1}^{\infty} I_n \subseteq (a, a + \varepsilon)$. We may presume that $m \ge k$.

Let $F = \{x \in \mathbb{N} : \langle \gamma x \rangle \in \bigcup_{n=1}^{m} I_n\}$ and let $G = \{x \in \mathbb{N} : \langle \gamma x \rangle \in \bigcup_{n=1}^{m} I_n \cup (a, a+\varepsilon)\}$. Now $\bigcup_{n=1}^{m} I_n \cup (a, a+\varepsilon)$ is a finite union of pairwise disjoint intervals of total length $\delta \leq \sum_{n=1}^{m} \mu(I_n) + \varepsilon$. Therefore we have by the uniform distribution of $\{\langle \gamma x \rangle : x \in \mathbb{N}\}$ that $d(F) = \sum_{n=1}^{m} \mu(I_n)$ and $d(G) = \delta$. Thus $\underline{d}(E) \geq d(F) \geq \sum_{n=1}^{k} \mu(I_n) > \alpha - \varepsilon$ and $\overline{d}(E) \leq d(G) \leq \sum_{n=1}^{m} \mu(I_n) + \varepsilon \leq \alpha + \varepsilon$.

Proof of Theorem 2.2. Take a positive irrational γ for which $\{\langle \gamma x \rangle : x \in A\}$ is dense in [0, 1). Let $s_0 = 0$ and inductively for $i \in \{1, 2, \ldots, r\}$, let $s_i = s_{i-1} + \alpha_i$ (so $s_r = 1$). For $i \in \{1, 2, \ldots, r\}$ and $j \in \mathbb{N}$, let

$$J_{i,j} = \left[1 - \frac{1}{2^j} + \frac{s_{i-1}}{2^{j+1}}, 1 - \frac{1}{2^j} + \frac{s_i}{2^{j+1}}\right]$$

For $i \in \{1, 2, \dots, r\}$ let $J_i = \bigcup_{j=0}^{\infty} J_{i,j}$ and let $E_i = \{x \in \mathbb{N} : \langle \gamma x \rangle \in J_i\}$. Then $\mu(J_i) = \sum_{j=0}^{\infty} \frac{s_i - s_{i-1}}{2^{j+1}} = \alpha_i$ so by the lemma, $d(E_i) = \alpha_i$.

3

Now let $t \in N$ and let $A = \bigcup_{j=1}^{t} F_j$. We claim

Fact: For any c, d with $0 \le c < d \le 1$ there exists $m \in \{1, 2, ..., t\}$ and there exist a, b, with $c \le a < b \le d$ such that $\{\langle \gamma x \rangle : x \in F_m\}$ is dense in (a, b).

To see this, suppose not. Let $a_0 = c$ and $b_0 = d$. Inductively let $j \in \{1, 2, ..., t\}$. Then $\{\langle \gamma x \rangle : x \in F_j\}$ is not dense in (a_{j-1}, b_{j-1}) so pick a_j, b_j with $a_{j-1} \leq a_j < b_j \leq b_{j-1}$ such that $\{\langle \gamma x \rangle : x \in F_j\} \cap (a_j, b_j) = \emptyset$. When this process is complete one has that $(a_t, b_t) \cap \bigcup_{j=1}^t \{\langle \gamma x \rangle : x \in F_j\} = \emptyset$. That is, $(a_t, b_t) \cap \{\langle \gamma x \rangle : x \in A\} = \emptyset$, a contradiction.

Now for $n \in \mathbb{N}$, we inductively choose a_n , b_n , and m(n) such that $m(n) \in \{1, 2, \ldots, t\}, 0 < a_n < b_n < 1, \{\langle \gamma x \rangle : x \in F_{m(n)}\}$ is dense in $(a_n, b_n), b_n \leq a_{n+1}, a_{n+1} \geq 1 - \frac{b_n - a_n}{4}$, and $b_{n+1} - a_{n+1} \leq \frac{b_n - a_n}{2}$.

Choose $m(1) \in \{1, 2, \ldots, t\}$ and a_1, b_1 such that $0 < a_1 < b_1 < 1$ and $\{\langle \gamma x \rangle : x \in F_{m(1)}\}$ is dense in (a_1, b_1) . Given $n \in \mathbb{N}$ and a_n and b_n , let $c = \max\left\{b_n, 1 - \frac{b_n - a_n}{4}\right\}$ and $d = \min\left\{1, c + \frac{b_n - a_n}{2}\right\}$. Apply Fact to choose $m(n+1) \in \{1, 2, \ldots, t\}$ and a_{n+1}, b_{n+1} with $c \leq a_{n+1} < b_{n+1} \leq d$ such that $\{\langle \gamma x \rangle : x \in F_{m(n+1)}\}$ is dense in (a_{n+1}, b_{n+1}) . Then $b_n \leq c \leq a_{n+1}, 1 - \frac{b_n - a_n}{4} \leq c \leq a_{n+1}$, and $b_{n+1} \leq d \leq c + \frac{b_n - a_n}{2} \leq a_{n+1} + \frac{b_n - a_n}{2}$.

Now take $m \in \{\overline{1}, 2, \ldots, t\}$ such that $D = \{n : m(n) = m\}$ is infinite and enumerate D in increasing over as $\{n(k)\}_{k=1}^{\infty}$. For each $k \in \mathbb{N}$, let $c_k = a_{n(k)}$ and $d_k = b_{n(k)}$. Then for each k, $\{\langle \gamma x \rangle : x \in F_m\}$ is dense in $(c_k, d_k), d_k \leq c_{k+1}, c_{k+1} \geq 1 - \frac{d_k - c_k}{4}$, and $d_{k+1} - c_{k+1} \leq \frac{d_k - c_k}{2}$. For each $k \in \mathbb{N}$ pick $x_k \in \mathbb{N}$ such that $\langle \gamma x_k \rangle \in \left(1 - d_k, 1 - c_k - \frac{d_k - c_k}{2}\right)$. Notice that for any $k \in \mathbb{N}$ and $v \in \omega, d_{k+v} - c_{k+v} \leq \frac{d_k - c_k}{2v}$.

We show now by induction on $v \in \mathbb{N}$ that

$$H \subseteq \mathbb{N}, |H| = v, \text{ and } k = \min H \Rightarrow$$

$$\Rightarrow \langle \gamma \sum_{l \in H} x_l \rangle \in \left(1 - d_k, 1 - c_k - \frac{d_k - c_k}{2^v} \right) \,. \tag{**}$$

When v = 1, (**) holds directly, so assume that v > 1 and (**) holds for v - 1. Let $H \subseteq \mathbb{N}$ with |H| = v, let $k = \min H$, let $u = \max H$, and let $G = H \setminus \{u\}$. Then $\langle \gamma \sum_{l \in G} x_l \rangle < 1 - c_k - \frac{d_k - c_k}{2^{v-1}}$ and $\langle \gamma x_u \rangle < 1 - c_u \leq 1 - c_{k+v-1} \leq \frac{d_{k+v-2} - c_{k+v-2}}{4} \leq \frac{d_k - c_k}{2^v}$ so

4 ON INTERSECTING PROPERTIES OF PARTITIONS OF INTEGERS

 $\begin{array}{l} \langle \gamma \sum_{l \in G} x_l \rangle + \langle \gamma x_u \rangle < 1 - c_k - \frac{d_k - c_k}{2^{v-1}} + \frac{d_k - c_k}{2^v} = 1 - c_k - \frac{d_k - c_k}{2^v}. \\ \text{Since } \langle \gamma \sum_{l \in G} x_l \rangle + \langle \gamma x_u \rangle < 1, \text{ we have that } \langle \gamma \sum_{l \in G} x_l \rangle + \langle \gamma x_u \rangle = \langle \gamma \sum_{l \in H} x_l \rangle \text{ and so } (**) \text{ is established.} \end{array}$

Now let *H* be a finite nonempty subset of N and let $i \in \{1, 2, ..., r\}$. We show that $(F_m + \sum_{l \in H} x_l) \cap E_i$ is infinite. Let $k = \min H$. Then by (**), $\langle \gamma \sum_{l \in H} x_l \rangle \in (1 - d_k, 1 - c_k)$ so $c_k + \langle \gamma \sum_{l \in H} x_l \rangle < 1 < d_k + \langle \gamma \sum_{l \in H} x_l \rangle$. Pick $j \in \mathbb{N}$ such that $1 - \frac{1}{2^j} > c_k + \langle \gamma \sum_{l \in H} x_l \rangle$. Then $c_k < 1 - \frac{1}{2^j} - \langle \gamma \sum_{l \in H} x_l \rangle + \frac{s_{i-1}}{2^{j+1}} < 1 - \frac{1}{2^j} - \langle \gamma \sum_{l \in H} x_l \rangle + \frac{s_i}{2^{j+1}} < d_k$ and $\{\langle \gamma y \rangle : y \in F_m\}$ is dense in (c_k, d_k) and so $K = \left\{ y \in F_m : 1 - \frac{1}{2^j} - \langle \gamma \sum_{l \in H} x_l \rangle + \frac{s_{i-1}}{2^{j+1}} < \langle \gamma y \rangle < 1 - \frac{1}{2^j} - \langle \gamma \sum_{l \in H} x_l \rangle + \frac{s_i}{2^{j+1}} \right\}$

is infinite.

To complete the proof it suffices to show that if $y \in K$, then $y + \sum_{l \in H} x_l \in E_i$. Indeed, given $y \in K$, $\langle \gamma y \rangle + \langle \gamma \sum_{l \in H} x_l \rangle \in J_{i,j}$ and $\langle \gamma y \rangle + \langle \gamma \sum_{l \in H} x_l \rangle < 1$ so $\langle \gamma y \rangle + \langle \gamma \sum_{l \in H} x_l \rangle = \langle \gamma (y + \sum_{l \in H} x_l) \rangle$ so $y + \sum_{l \in H} x_l \in E_i$ as required.

3. Further problems and results

Theorem 2.2 implies that for every t partition of the set $\mathbb{N} = \bigcup_{j=1}^{t} F_j$ not just one translation h of some F_m meets E_j : $(j = 1, \ldots, r)$ in an infinite set, rather each translations do, given h from an additive "cube".

A natural question is to ask the following: Is any infinite set $\{x_n\}_{n=1}^{\infty}$, such that Theorem 2.2 remains true if we want that the elements h included in $FS(\{x_n\}_{n=1}^{\infty}) \cup FP(\{x_n\}_{n=1}^{\infty})$, where $FP(\{x_n\}_{n=1}^{\infty})$ is a multiplicative cube defined by

 $FS(\{x_n\}_{n=1}^{\infty}) = \{\prod_{n \in F} x_n : F \text{ is a finite nonempty subset of } \mathbb{N}\} ?$

Our combinatorial approach is not enough to prove this extension. Maybe some tools from ergodic theory would work.

Acknowledgement: This note is supported by "Balaton Program Project" and OTKA grants K 61908, K 67676. The author would like to thank the referee for his/her help in the presentation of this paper.

5

References

- N. Hindman: Ultrafilters and combinatorial number theory. Number theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979), pp. 119–184, Lecture Notes in Math., 751, Springer, Berlin, 1979.
- [2] R. Raimi, Translation properties of finite partitions of the positive integers, Fund. Math. 61 (1968) 253-256.

NORBERT HEGYVÁRI, ELTE TTK, EÖTVÖS UNIVERSITY, INSTITUTE OF MATH-EMATICS, H-1117 PÁZMÁNY ST. 1/C, BUDAPEST, HUNGARY *E-mail address:* hegyvari@elte.hu