ON INTERSECTING PROPERTIES OF PARTITIONS OF INTEGERS

NORBERT HEGYVÁRI

Abstract

We derive a generalization of a theorem of Raimi proving there is a partition of natural numbers with given densities of classes which meet structured translates of any other class of a partition of natural numbers.

2000 Mathematics Subject Classification:11B75,05D10. Keywords: Ramsey-type intersection problem

1. Introduction

A branch of combinatorial analysis - called Ramsey theory - investigates partitions of certain structures. In [1], p.180, Th 11.15] Hindman deals with the intersecting properties of a finite partition of the set \mathbb{N} of positive integers. He gives an elementary proof for Raimi's theorem [2] which reads as follows:

Theorem 1.1. There exists $E \subseteq \mathbb{N}$ such that, whenever $r \in \mathbb{N}$ and $\mathbb{N}=$ $\bigcup_{i=1}^{r} D_{i}$ there exist $i \in\{1,2, \ldots, r\}$ and $k \in \mathbb{N}$ such that $\left(D_{i}+k\right) \cap E$ is infinite and $\left(D_{i}+k\right) \backslash E$ is infinite.

Hindman shows that the set E of natural numbers whose last nonzero entry in their ternary expansion is 1 satisfies this condition. Raimi's original proof used a topological result.

The aim of this paper is to generalize Raimi's Theorem which will be done in the next section.

2. A generalization of Raimi's Theorem

Let \mathbb{N} be the set of non-negative integers. Let $A \subseteq \mathbb{N}$ and let $b \in \mathbb{N}$. Then $A+b=\{a+b: a \in A\}$. Given a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in \mathbb{N},
$F S\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)=\left\{\sum_{n \in F} x_{n}: F\right.$ is a finite nonempty subset of $\left.\mathbb{N}\right\}$.
For $A \subseteq \mathbb{N}$ let us define the lower density of A by $\underline{d}(A)=\liminf _{n \rightarrow \infty} \frac{|A \cap[1, n]|}{n}$, the upper density by $\bar{d}(A)=\underset{n \rightarrow \infty}{\limsup } \frac{|A \cap[1, n]|}{n}$, and the density by $d(A)=\lim _{n \rightarrow \infty} \frac{|A \cap[1, n]|}{n}$ if the limit exists. Given a real number x we
denote by $\langle x\rangle$ the fractional part of x. That is, $\langle x\rangle=x-\lfloor x\rfloor$. Given a subset A of \mathbb{R}, we write $\mu(A)$ for the outer Lebesgue measure of A.

Now we state a generalization of Raimi's theorem.
Theorem 2.1. Let $A \subseteq \mathbb{N}$ such that there is a positive irrational γ for which $\{\langle\gamma x\rangle: x \in A\}$ is dense in $[0,1)$. Let $r \in \mathbb{N}$ and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be positive real numbers such that $\sum_{i=1}^{r} \alpha_{i}=1$. There exists a disjoint partition $\mathbb{N}=\bigcup_{i=1}^{r}$ such that
(1) for every $i \in\{1,2, \ldots, r\}, d\left(E_{i}\right)=\alpha_{i}$ and
(2) for each $t \in N$ and each partition $A=\bigcup_{j=1}^{t} F_{j}$, there exist $m \in$ $\{1,2, \ldots, t\}$ and a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in \mathbb{N} such that for every $h \in$ $F S\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)$ and every $i \in\{1,2, \ldots, r\},\left(F_{m}+h\right) \cap E_{i}$ is infinite.

Notice that Raimi's theorem follows from the case $r=2$.
First we prove a technical lemma.

Lemma 2.2. Let $\left\{I_{n}\right\}_{n=1}^{\infty}$ be a sequence of pairwise disjoint intervals in $[0,1)$ and assume that for every $\varepsilon>0$ there exist $a \in[0,1)$ and $m \in \mathbb{N}$ such that $\bigcup_{n=m+1}^{\infty} I_{n} \subseteq(a, a+\varepsilon)$. Let γ be a positive irrational number, and let $E=\left\{x \in \mathbb{N}:\langle\gamma x\rangle \in \bigcup_{n=1}^{\infty} I_{n}\right\}$. Then $d(E)=\sum_{n=1}^{\infty} \mu\left(I_{n}\right)$.

Proof of Lemma 2.1. Recall that if γ is a nonzero irrational number, then $\{\langle\gamma x\rangle: x \in \mathbb{N}\}$ is uniformly distributed $\bmod 1$. That is, if $0 \leq a<$ $b \leq 1$, then $d(\{x \in \mathbb{N}:\langle\gamma x\rangle \in(a, b)\})=b-a$. Let $\alpha=\sum_{n=1}^{\infty} \mu\left(I_{n}\right)$. Let $\varepsilon>0$ be given and let $k \in \mathbb{N}$ be an integer such that $\sum_{n=1}^{k} \mu\left(I_{n}\right)>\alpha-\varepsilon$. Choose an $a \in[0,1)$ and $m \in \mathbb{N}$ such that $\bigcup_{n=m+1}^{\infty} I_{n} \subseteq(a, a+\varepsilon)$. We may presume that $m \geq k$.

Let $F=\left\{x \in \mathbb{N}:\langle\gamma x\rangle \in \bigcup_{n=1}^{m} I_{n}\right\}$ and let $G=\{x \in \mathbb{N}:\langle\gamma x\rangle \in$ $\left.\bigcup_{n=1}^{m} I_{n} \cup(a, a+\varepsilon)\right\}$. Now $\bigcup_{n=1}^{m} I_{n} \cup(a, a+\varepsilon)$ is a finite union of pairwise disjoint intervals of total length $\delta \leq \sum_{n=1}^{m} \mu\left(I_{n}\right)+\varepsilon$. Therefore we have by the uniform distribution of $\{\langle\gamma x\rangle: x \in \mathbb{N}\}$ that $d(F)=\sum_{n=1}^{m} \mu\left(I_{n}\right)$ and $d(G)=\delta$. Thus $\underline{d}(E) \geq d(F) \geq \sum_{n=1}^{k} \mu\left(I_{n}\right)>\alpha-\varepsilon$ and $\bar{d}(E) \leq$ $d(G) \leq \sum_{n=1}^{m} \mu\left(I_{n}\right)+\varepsilon \leq \alpha+\varepsilon$.

Proof of Theorem 2.2. Take a positive irrational γ for which $\{\langle\gamma x\rangle$: $x \in A\}$ is dense in $[0,1)$. Let $s_{0}=0$ and inductively for $i \in\{1,2, \ldots, r\}$, let $s_{i}=s_{i-1}+\alpha_{i}\left(\right.$ so $\left.s_{r}=1\right)$. For $i \in\{1,2, \ldots, r\}$ and $j \in \mathbb{N}$, let

$$
J_{i, j}=\left[1-\frac{1}{2^{j}}+\frac{s_{i-1}}{2^{j+1}}, 1-\frac{1}{2^{j}}+\frac{s_{i}}{2^{j+1}}\right) .
$$

For $i \in\{1,2, \ldots, r\}$ let $J_{i}=\bigcup_{j=0}^{\infty} J_{i, j}$ and let $E_{i}=\{x \in \mathbb{N}:\langle\gamma x\rangle \in$ $\left.J_{i}\right\}$. Then $\mu\left(J_{i}\right)=\sum_{j=0}^{\infty} \frac{s_{i}-s_{i-1}}{2^{j+1}}=\alpha_{i}$ so by the lemma, $d\left(E_{i}\right)=\alpha_{i}$.

Now let $t \in N$ and let $A=\bigcup_{j=1}^{t} F_{j}$. We claim
Fact: For any c, d with $0 \leq c<d \leq 1$ there exists $m \in\{1,2, \ldots, t\}$ and there exist a, b, with $c \leq a<b \leq d$ such that $\left\{\langle\gamma x\rangle: x \in F_{m}\right\}$ is dense in (a, b).

To see this, suppose not. Let $a_{0}=c$ and $b_{0}=d$. Inductively let $j \in$ $\{1,2, \ldots, t\}$. Then $\left\{\langle\gamma x\rangle: x \in F_{j}\right\}$ is not dense in $\left(a_{j-1}, b_{j-1}\right)$ so pick a_{j}, b_{j} with $a_{j-1} \leq a_{j}<b_{j} \leq b_{j-1}$ such that $\left\{\langle\gamma x\rangle: x \in F_{j}\right\} \cap\left(a_{j}, b_{j}\right)=$ \emptyset. When this process is complete one has that $\left(a_{t}, b_{t}\right) \cap \bigcup_{j=1}^{t}\{\langle\gamma x\rangle$: $\left.x \in F_{j}\right\}=\emptyset$. That is, $\left.\left(a_{t}, b_{t}\right) \cap\{\langle\gamma\rangle\rangle: x \in A\right\}=\emptyset$, a contradiction.

Now for $n \in \mathbb{N}$, we inductively choose a_{n}, b_{n}, and $m(n)$ such that $m(n) \in\{1,2, \ldots, t\}, 0<a_{n}<b_{n}<1,\left\{\langle\gamma x\rangle: x \in F_{m(n)}\right\}$ is dense in $\left(a_{n}, b_{n}\right), b_{n} \leq a_{n+1}, a_{n+1} \geq 1-\frac{b_{n}-a_{n}}{4}$, and $b_{n+1}-a_{n+1} \leq \frac{b_{n}-a_{n}}{2}$.

Choose $m(1) \in\{1,2, \ldots, t\}$ and a_{1}, b_{1} such that $0<a_{1}<b_{1}<1$ and $\left\{\langle\gamma x\rangle: x \in F_{m(1)}\right\}$ is dense in $\left(a_{1}, b_{1}\right)$. Given $n \in \mathbb{N}$ and a_{n} and b_{n}, let $c=\max \left\{b_{n}, 1-\frac{b_{n}-a_{n}}{4}\right\}$ and $d=\min \left\{1, c+\frac{b_{n}-a_{n}}{2}\right\}$. Apply Fact to choose $m(n+1) \in\{1,2, \ldots, t\}$ and a_{n+1}, b_{n+1} with $c \leq a_{n+1}<b_{n+1} \leq d$ such that $\left\{\langle\gamma x\rangle: x \in F_{m(n+1)}\right\}$ is dense in $\left(a_{n+1}, b_{n+1}\right)$. Then $b_{n} \leq c \leq a_{n+1}, 1-\frac{b_{n}-a_{n}}{4} \leq c \leq a_{n+1}$, and $b_{n+1} \leq d \leq c+\frac{b_{n}-a_{n}}{2} \leq a_{n+1}+\frac{b_{n}-a_{n}}{2}$.

Now take $m \in\{1,2, \ldots, t\}$ such that $D=\{n: m(n)=m\}$ is infinite and enumerate D in increasing over as $\{n(k)\}_{k=1}^{\infty}$. For each $k \in \mathbb{N}$, let $c_{k}=a_{n(k)}$ and $d_{k}=b_{n(k)}$. Then for each $k,\left\{\langle\gamma x\rangle: x \in F_{m}\right\}$ is dense in $\left(c_{k}, d_{k}\right), d_{k} \leq c_{k+1}, c_{k+1} \geq 1-\frac{d_{k}-c_{k}}{4}$, and $d_{k+1}-c_{k+1} \leq \frac{d_{k}-c_{k}}{2}$. For each $k \in \mathbb{N}$ pick $x_{k} \in \mathbb{N}$ such that $\left\langle\gamma x_{k}\right\rangle \in\left(1-d_{k}, 1-c_{k}-\frac{d_{k}-c_{k}}{2}\right)$. Notice that for any $k \in \mathbb{N}$ and $v \in \omega, d_{k+v}-c_{k+v} \leq \frac{d_{k}-c_{k}}{2^{v}}$.

We show now by induction on $v \in \mathbb{N}$ that

$$
\begin{gather*}
H \subseteq \mathbb{N},|H|=v, \text { and } k=\min H \Rightarrow \\
\Rightarrow\left\langle\gamma \sum_{l \in H} x_{l}\right\rangle \in\left(1-d_{k}, 1-c_{k}-\frac{d_{k}-c_{k}}{2^{v}}\right) . \tag{**}
\end{gather*}
$$

When $v=1,(* *)$ holds directly, so assume that $v>1$ and $(* *)$ holds for $v-1$. Let $H \subseteq \mathbb{N}$ with $|H|=v$, let $k=\min H$, let $u=$ $\max H$, and let $G=H \backslash\{u\}$. Then $\left\langle\gamma \sum_{l \in G} x_{l}\right\rangle<1-c_{k}-\frac{d_{k}-c_{k}}{2^{v-1}}$ and $\left\langle\gamma x_{u}\right\rangle<1-c_{u} \leq 1-c_{k+v-1} \leq \frac{d_{k+v-2}-c_{k+v-2}}{4} \leq \frac{d_{k}-c_{k}}{2^{v}}$ so
$\left\langle\gamma \sum_{l \in G} x_{l}\right\rangle+\left\langle\gamma x_{u}\right\rangle<1-c_{k}-\frac{d_{k}-c_{k}}{2^{v-1}}+\frac{d_{k}-c_{k}}{2^{v}}=1-c_{k}-\frac{d_{k}-c_{k}}{2^{v}}$. Since $\left\langle\gamma \sum_{l \in G} x_{l}\right\rangle+\left\langle\gamma x_{u}\right\rangle<1$, we have that $\left\langle\gamma \sum_{l \in G} x_{l}\right\rangle+\left\langle\gamma x_{u}\right\rangle=$ $\left\langle\gamma \sum_{l \in H} x_{l}\right\rangle$ and so ($* *$) is established.

Now let H be a finite nonempty subset of \mathbb{N} and let $i \in\{1,2, \ldots, r\}$. We show that $\left(F_{m}+\sum_{l \in H} x_{l}\right) \cap E_{i}$ is infinite. Let $k=\min H$. Then by $(* *),\left\langle\gamma \sum_{l \in H} x_{l}\right\rangle \in\left(1-d_{k}, 1-c_{k}\right)$ so $c_{k}+\left\langle\gamma \sum_{l \in H} x_{l}\right\rangle<1<$ $d_{k}+\left\langle\gamma \sum_{l \in H} x_{l}\right\rangle$. Pick $j \in \mathbb{N}$ such that $1-\frac{1}{2^{j}}>c_{k}+\left\langle\gamma \sum_{l \in H} x_{l}\right\rangle$. Then $c_{k}<1-\frac{1}{2^{j}}-\left\langle\gamma \sum_{l \in H} x_{l}\right\rangle+\frac{s_{i-1}}{2^{j+1}}<1-\frac{1}{2^{j}}-\left\langle\gamma \sum_{l \in H} x_{l}\right\rangle+\frac{s_{i}}{2^{j+1}}<d_{k}$ and $\left\{\langle\gamma y\rangle: y \in F_{m}\right\}$ is dense in $\left(c_{k}, d_{k}\right)$ and so
$K=\left\{y \in F_{m}: 1-\frac{1}{2^{j}}-\left\langle\gamma \sum_{l \in H} x_{l}\right\rangle+\frac{s_{i-1}}{2^{j+1}}<\langle\gamma y\rangle<1-\frac{1}{2^{j}}-\left\langle\gamma \sum_{l \in H} x_{l}\right\rangle+\frac{s_{i}}{2^{j+1}}\right\}$
is infinite.
To complete the proof it suffices to show that if $y \in K$, then $y+$ $\sum_{l \in H} x_{l} \in E_{i}$. Indeed, given $y \in K,\langle\gamma y\rangle+\left\langle\gamma \sum_{l \in H} x_{l}\right\rangle \in J_{i, j}$ and $\langle\gamma y\rangle+\left\langle\gamma \sum_{l \in H} x_{l}\right\rangle<1$ so $\langle\gamma y\rangle+\left\langle\gamma \sum_{l \in H} x_{l}\right\rangle=\left\langle\gamma\left(y+\sum_{l \in H} x_{l}\right)\right\rangle$ so $y+\sum_{l \in H} x_{l} \in E_{i}$ as required.

3. Further problems and results

Theorem 2.2 implies that for every t partition of the set $\mathbb{N}=\bigcup_{j=1}^{t} F_{j}$ not just one translation h of some F_{m} meets $E_{j}:(j=1, \ldots, r)$ in an infinite set, rather each translations do, given h from an additive "cube".

A natural question is to ask the following: Is any infinite set $\left\{x_{n}\right\}_{n=1}^{\infty}$, such that Theorem 2.2 remains true if we want that the elements h included in $F S\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right) \cup F P\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)$, where $F P\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)$ is a multiplicative cube defined by

$$
F S\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)=\left\{\prod_{n \in F} x_{n}: F \text { is a finite nonempty subset of } \mathbb{N}\right\} ?
$$

Our combinatorial approach is not enough to prove this extension. Maybe some tools from ergodic theory would work.

Acknowledgement: This note is supported by "Balaton Program Project" and OTKA grants K 61908, K 67676. The author would like to thank the referee for his/her help in the presentation of this paper.

References

[1] N. Hindman: Ultrafilters and combinatorial number theory. Number theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979), pp. 119-184, Lecture Notes in Math., 751, Springer, Berlin, 1979.
[2] R. Raimi, Translation properties of finite partitions of the positive integers, Fund. Math. 61 (1968) 253-256.

Norbert Hegyvári, ELTE TTK, EÖtvös University, Institute of Mathematics, H-1117 Pázmány st. 1/c, Budapest, Hungary

E-mail address: hegyvari@elte.hu

