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Abstract. We derive a generalization of a theorem of Raimi prov-
ing there is a partition of natural numbers with given densities of
classes which meet structured translates of any other class of a
partition of natural numbers.
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1. Introduction

A branch of combinatorial analysis – called Ramsey theory – investi-
gates partitions of certain structures. In [1], p.180, Th 11.15] Hindman
deals with the intersecting properties of a finite partition of the set N
of positive integers. He gives an elementary proof for Raimi’s theorem
[2] which reads as follows:

Theorem 1.1. There exists E ⊆ N such that, whenever r ∈ N and N =∪r
i=1Di there exist i ∈ {1, 2, . . . , r} and k ∈ N such that (Di + k) ∩ E

is infinite and (Di + k) \ E is infinite.

Hindman shows that the set E of natural numbers whose last non-
zero entry in their ternary expansion is 1 satisfies this condition. Raimi’s
original proof used a topological result.

The aim of this paper is to generalize Raimi’s Theorem which will
be done in the next section.

2. A generalization of Raimi’s Theorem

Let N be the set of non-negative integers. Let A ⊆ N and let b ∈ N.
Then A+ b = {a+ b : a ∈ A}. Given a sequence {xn}∞n=1 in N,

FS({xn}∞n=1) = {
∑

n∈F xn : F is a finite nonempty subset of N} .

ForA ⊆ N let us define the lower density ofA by d(A) = lim inf
n→∞

|A ∩ [1, n]|
n

,

the upper density by d(A) = lim sup
n→∞

|A ∩ [1, n]|
n

, and the density by

d(A) = lim
n→∞

|A ∩ [1, n]|
n

if the limit exists. Given a real number x we
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denote by ⟨x⟩ the fractional part of x. That is, ⟨x⟩ = x − ⌊x⌋. Given
a subset A of R, we write µ(A) for the outer Lebesgue measure of A.

Now we state a generalization of Raimi’s theorem.

Theorem 2.1. Let A ⊆ N such that there is a positive irrational γ for
which {⟨γx⟩ : x ∈ A} is dense in [0, 1). Let r ∈ N and let α1, α2, . . . , αr

be positive real numbers such that
∑r

i=1 αi = 1. There exists a disjoint
partition N =

∪r
i=1 such that

(1) for every i ∈ {1, 2, . . . , r}, d(Ei) = αi and
(2) for each t ∈ N and each partition A =

∪t
j=1 Fj, there exist m ∈

{1, 2, . . . , t} and a sequence {xn}∞n=1 in N such that for every h ∈
FS({xn}∞n=1) and every i ∈ {1, 2, . . . , r}, (Fm + h) ∩ Ei is infinite.

Notice that Raimi’s theorem follows from the case r = 2.

First we prove a technical lemma.

Lemma 2.2. Let {In}∞n=1 be a sequence of pairwise disjoint intervals in
[0, 1) and assume that for every ε > 0 there exist a ∈ [0, 1) and m ∈ N
such that

∪∞
n=m+1 In ⊆ (a, a+ε). Let γ be a positive irrational number,

and let E = {x ∈ N : ⟨γx⟩ ∈
∪∞

n=1 In}. Then d(E) =
∑∞

n=1 µ(In).

Proof of Lemma 2.1. Recall that if γ is a nonzero irrational number,
then {⟨γx⟩ : x ∈ N} is uniformly distributed mod 1. That is, if 0 ≤ a <
b ≤ 1, then d({x ∈ N : ⟨γx⟩ ∈ (a, b)}) = b−a. Let α =

∑∞
n=1 µ(In). Let

ε > 0 be given and let k ∈ N be an integer such that
∑k

n=1 µ(In) > α−ε.
Choose an a ∈ [0, 1) and m ∈ N such that

∪∞
n=m+1 In ⊆ (a, a+ ε). We

may presume that m ≥ k.
Let F = {x ∈ N : ⟨γx⟩ ∈

∪m
n=1 In} and let G = {x ∈ N : ⟨γx⟩ ∈∪m

n=1 In∪(a, a+ε)}. Now
∪m

n=1 In∪(a, a+ε) is a finite union of pairwise
disjoint intervals of total length δ ≤

∑m
n=1 µ(In)+ε. Therefore we have

by the uniform distribution of {⟨γx⟩ : x ∈ N} that d(F ) =
∑m

n=1 µ(In)

and d(G) = δ. Thus d(E) ≥ d(F ) ≥
∑k

n=1 µ(In) > α − ε and d(E) ≤
d(G) ≤

∑m
n=1 µ(In) + ε ≤ α + ε. �

Proof of Theorem 2.2. Take a positive irrational γ for which {⟨γx⟩ :
x ∈ A} is dense in [0, 1). Let s0 = 0 and inductively for i ∈ {1, 2, . . . , r},
let si = si−1 + αi (so sr = 1). For i ∈ {1, 2, . . . , r} and j ∈ N, let

Ji,j =

[
1− 1

2j
+

si−1

2j+1
, 1− 1

2j
+

si
2j+1

)
.

For i ∈ {1, 2, . . . , r} let Ji =
∪∞

j=0 Ji,j and let Ei = {x ∈ N : ⟨γx⟩ ∈

Ji}. Then µ(Ji) =
∑∞

j=0

si − si−1

2j+1
= αi so by the lemma, d(Ei) = αi.
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Now let t ∈ N and let A =
∪t

j=1 Fj. We claim

Fact: For any c, d with 0 ≤ c < d ≤ 1 there exists m ∈ {1, 2, . . . , t}
and there exist a, b, with c ≤ a < b ≤ d such that {⟨γx⟩ : x ∈ Fm} is
dense in (a, b).

To see this, suppose not. Let a0 = c and b0 = d. Inductively let j ∈
{1, 2, . . . , t}. Then {⟨γx⟩ : x ∈ Fj} is not dense in (aj−1, bj−1) so pick
aj, bj with aj−1 ≤ aj < bj ≤ bj−1 such that {⟨γx⟩ : x ∈ Fj} ∩ (aj, bj) =

∅. When this process is complete one has that (at, bt) ∩
∪t

j=1{⟨γx⟩ :

x ∈ Fj} = ∅. That is, (at, bt) ∩ {⟨γx⟩ : x ∈ A} = ∅, a contradiction.

Now for n ∈ N, we inductively choose an, bn, and m(n) such that
m(n) ∈ {1, 2, . . . , t}, 0 < an < bn < 1, {⟨γx⟩ : x ∈ Fm(n)} is dense in

(an, bn), bn ≤ an+1, an+1 ≥ 1− bn − an
4

, and bn+1 − an+1 ≤
bn − an

2
.

Choose m(1) ∈ {1, 2, . . . , t} and a1, b1 such that 0 < a1 < b1 < 1
and {⟨γx⟩ : x ∈ Fm(1)} is dense in (a1, b1). Given n ∈ N and an

and bn, let c = max

{
bn, 1−

bn − an
4

}
and d = min

{
1, c+

bn − an
2

}
.

Apply Fact to choose m(n + 1) ∈ {1, 2, . . . , t} and an+1, bn+1 with
c ≤ an+1 < bn+1 ≤ d such that {⟨γx⟩ : x ∈ Fm(n+1)} is dense in

(an+1, bn+1). Then bn ≤ c ≤ an+1, 1 − bn − an
4

≤ c ≤ an+1, and

bn+1 ≤ d ≤ c+
bn − an

2
≤ an+1 +

bn − an
2

.

Now take m ∈ {1, 2, . . . , t} such that D = {n : m(n) = m} is infinite
and enumerate D in increasing over as {n(k)}∞k=1. For each k ∈ N, let
ck = an(k) and dk = bn(k). Then for each k, {⟨γx⟩ : x ∈ Fm} is dense in

(ck, dk), dk ≤ ck+1, ck+1 ≥ 1− dk − ck
4

, and dk+1 − ck+1 ≤
dk − ck

2
. For

each k ∈ N pick xk ∈ N such that ⟨γxk⟩ ∈
(
1− dk, 1− ck −

dk − ck
2

)
.

Notice that for any k ∈ N and v ∈ ω, dk+v − ck+v ≤
dk − ck

2v
.

We show now by induction on v ∈ N that

H ⊆ N , |H| = v, and k = minH ⇒

⇒ ⟨γ
∑

l∈H xl⟩ ∈
(
1− dk, 1− ck −

dk − ck
2v

)
. (∗∗)

When v = 1, (∗∗) holds directly, so assume that v > 1 and (∗∗)
holds for v − 1. Let H ⊆ N with |H| = v, let k = minH, let u =

maxH, and let G = H \ {u}. Then ⟨γ
∑

l∈G xl⟩ < 1 − ck −
dk − ck
2v−1

and ⟨γxu⟩ < 1 − cu ≤ 1 − ck+v−1 ≤ dk+v−2 − ck+v−2

4
≤ dk − ck

2v
so
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⟨γ
∑

l∈G xl⟩+ ⟨γxu⟩ < 1− ck −
dk − ck
2v−1

+
dk − ck

2v
= 1− ck −

dk − ck
2v

.

Since ⟨γ
∑

l∈G xl⟩ + ⟨γxu⟩ < 1, we have that ⟨γ
∑

l∈G xl⟩ + ⟨γxu⟩ =
⟨γ

∑
l∈H xl⟩ and so (∗∗) is established.

Now let H be a finite nonempty subset of N and let i ∈ {1, 2, . . . , r}.
We show that (Fm +

∑
l∈H xl) ∩ Ei is infinite. Let k = minH. Then

by (∗∗), ⟨γ
∑

l∈H xl⟩ ∈ (1 − dk, 1 − ck) so ck + ⟨γ
∑

l∈H xl⟩ < 1 <

dk + ⟨γ
∑

l∈H xl⟩. Pick j ∈ N such that 1− 1

2j
> ck + ⟨γ

∑
l∈H

xl⟩. Then

ck < 1− 1

2j
− ⟨γ

∑
l∈H

xl⟩+
si−1

2j+1
< 1− 1

2j
− ⟨γ

∑
l∈H

xl⟩+
si

2j+1
< dk and

{⟨γy⟩ : y ∈ Fm} is dense in (ck, dk) and so

K =

{
y ∈ Fm : 1− 1

2j
− ⟨γ

∑
l∈H

xl⟩+
si−1

2j+1
< ⟨γy⟩ < 1− 1

2j
− ⟨γ

∑
l∈H

xl⟩+
si

2j+1

}
is infinite.

To complete the proof it suffices to show that if y ∈ K, then y +∑
l∈H xl ∈ Ei. Indeed, given y ∈ K, ⟨γy⟩ + ⟨γ

∑
l∈H xl⟩ ∈ Ji,j and

⟨γy⟩ + ⟨γ
∑

l∈H xl⟩ < 1 so ⟨γy⟩ + ⟨γ
∑

l∈H xl⟩ = ⟨γ(y +
∑

l∈H xl)⟩ so
y +

∑
l∈H xl ∈ Ei as required.

�

3. Further problems and results

Theorem 2.2 implies that for every t partition of the set N =
∪t

j=1 Fj

not just one translation h of some Fm meets Ej : (j = 1, . . . , r) in
an infinite set, rather each translations do, given h from an additive
”cube”.

A natural question is to ask the following: Is any infinite set {xn}∞n=1,
such that Theorem 2.2 remains true if we want that the elements h in-
cluded in FS({xn}∞n=1) ∪ FP ({xn}∞n=1), where FP ({xn}∞n=1) is a mul-
tiplicative cube defined by

FS({xn}∞n=1) = {
∏

n∈F xn : F is a finite nonempty subset of N} ?
Our combinatorial approach is not enough to prove this extension.
Maybe some tools from ergodic theory would work.
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