DISTRIBUTION OF RESIDUES IN APPROXIMATE SUBGROUPS OF \mathbb{F}_p^*

NORBERT HEGYVÁRI AND FRANÇOIS HENNECART

ABSTRACT. We extend a result due to Bourgain on the uniform distribution of residues by proving that subsets of the type $f(I) \cdot H$ is equidistributed (as p tends to infinity) where f is a polynomial, I is an interval of \mathbb{F}_p and H is an approximate subgroup of \mathbb{F}_p^* with size larger than polylogarithmic in p.

1. Introduction

For any prime number p, we denote by \mathbb{F}_p the finite fields with p elements, and let $\mathbb{F}_p^* = \mathbb{F}_p \setminus \{0\}$. Let $\epsilon > 0$. We say that a subset H of \mathbb{F}_p is ϵ -equidistributed modulo p if for any interval J of \mathbb{F}_p , we have

$$\Big|\frac{|H\cap J|}{|H|} - \frac{|J|}{p}\Big| < \epsilon.$$

Using the Weyl criterion, ϵ -equidistribution modulo p follows from the following bound on trigonometric sums

(1)
$$\max_{\substack{a \in \mathbb{Z} \\ p \nmid a}} \left| \sum_{h \in H} e_p(ah) \right| < \epsilon' |H|,$$

for some $\epsilon' > 0$ (depending on ϵ). Here we wrote $e_p(x)$ for $e^{2\pi i x/p}$.

Let H be a (multiplicative) subgroup of \mathbb{F}_p^* . In [3], it is shown that if

$$|H| > p^{(\log \log p)^{-c}}$$

where c is an explicit positive constant then (1) holds true if p is large enough.

In another direction, Bourgain considered in [1] the question of the distribution of the values taken by a *sparse* polynomial formed by monomials wich are, in some sense, sufficiently independent: for $a_1, \ldots, a_d \in \mathbb{F}_p^*$,

$$\gcd(k_i, p-1), \gcd(k_i - k_j, p-1) < p^{1-\gamma} \Longrightarrow \Big| \sum_{r=1}^p e_p(a_1 x^{k_1} + \dots + a_d x^{k_d}) \Big| < p^{1-\delta},$$

where $\delta = \delta(\gamma) > 0$.

Date: September 12, 2010.

2000 Mathematics Subject Classification. primary 11B75.

Research of the first author is partially supported by OTKA grants K 61908, K 67676.

The first author is grateful to the members of the LAMUSE (Laboratory of Mathematics of the University of Saint-Etienne) for their warm hospitality during his stay.

Bourgain also investigated in [2] a mixed question and showed that $I \cdot H := \{xh \mid x \in I, h \in H\}$ is ϵ -equidistributed modulo p if I is an interval of \mathbb{F}_p of size $\geq p^{\delta}$ and H is a subgroup of \mathbb{F}_p^* such that $|H| > (\log p)^A$ for some large A depending on the positive real numbers ϵ and δ . It means that $I \cdot H$ becomes equidistributed when p tends to infinity if one assumes more precisely that

$$\frac{\log |H|}{\log \log p} \to \infty.$$

In Section 2, we combine these two Bourgain's statement and obtain a result (cf. Proposition 1) on equidistribution for sets $f(I) \cdot H$ where H is a subgroup of \mathbb{F}_p^* , I is an interval of \mathbb{F}_p , $|I| \geq p^{\delta}$ and f is a non constant polynomial.

We say that a subset of \mathbb{F}_p* is an approximate subgroup if $|H \cdot H| < 2|H|$. It is not difficult to see that Bourgain-Glibichuk-Konyagin's result (cf. [3]) quoted above can be easily extended to approximate subgroup. In section 3, we show our main result (cf. Theorem 3) by extending Proposition 1 to the case where H is an approximate subgroup.

In the last section, we investigate the question of the existence of residues of a given small subgroup of \mathbb{F}_p^* in the sumset A + B for two arbitrary subsets of \mathbb{F}_p .

We stress the fact that Bourgain's condition on the polylogarithm size of H is essential in our proofs. By taking $p=2^q-1$ a Mersenne prime, we can observe that the multiplicative subgroup H generated by 2 has order $\geq \log p$. Nevertheless, H is not ϵ -distributed modulo p since $H \cap ((p+1)/2, p) = \emptyset$. Moreover, if I is the interval $(1, 2^{\delta q})$ in \mathbb{F}_p^* with $0 < \delta < 1/2$, then $I \cdot \{2^j, \ 0 \leq j \leq (1-\delta)q-1\} \subset (0, (p+1)/2)$. This implies that $|(I \cdot H) \cap ((p+1)/2, p)| \leq 2^{\delta q} |I| = o(|I||H|)$, thus $I \cdot H$ is not ϵ -equidistributed when p is large enough (assuming the Lenstra-Pomerance-Wagstaff conjecture which asserts that there are infinitely many Mersenne primes).

These questions are related to results and problems quoted in [4].

In order to prove our results, we will argue by induction on the degree of f, on the back of Bourgain's result, using a squaring operation on trignometric sums and Kneser's theorem on the structure of small doubling sets in Abelian groups.

2. A result of asymptotic equidistribution for subgroups of \mathbb{F}_p^*

Here we prove

Proposition 1. Let k be positive integer, c be a positive real number and $\epsilon, \delta \in (0, 1]$ be real numbers. Then there exist $p_0 = p_0(k, c, \epsilon, \delta)$, $A = A(k, c, \epsilon, \delta)$ such that for any prime $p \geq p_0$, any subgroup H^* of \mathbb{F}_p^* with $|H^*| > (\log p)^A$, any $u \in \mathbb{F}_p^*$, any subset H of uH^* with

 $|H| > c|H^*|$, any interval $I \subset \mathbb{F}_p$ with $|I| \ge p^{\delta}$ and any $f(x) \in \mathbb{F}_p[x]$ with $\deg f = k$, one has

$$\Big| \sum_{h \in H} \sum_{z \in I} e_p \big(h f(z) \big) \Big| \le \epsilon |H| |I|.$$

Let H be a (multiplicative) subgroup of \mathbb{F}_p^* and I be an interval of \mathbb{F}_p , that is

$$I = \{ax + b \pmod{p} \mid 0 \le x \le |I| - 1\},\$$

for some $a \in \mathbb{F}_p^*$ and $b \in \mathbb{F}_p$. We also fix a polynomial f of degree ≥ 1 . We are wandering the question of equidistribution modulo p as p to infinity of

$$f(I) \cdot H := \{ f(z)h \mid z \in I, h \in H \}.$$

In order to use Bourgain's result on the distribution of g^n modulo $p, n \ge 0$, where $g \in \mathbb{F}_p^*$, we assume a polylogarithmic size in p for |H|, that is

$$\frac{\log |H|}{\log \log p} > A,$$

where A is a computable large constant. Under this condition, one has for any real number $\gamma > 0$ and any sufficiently large prime number p,

(2)
$$N(H,\gamma) := \left| \{ h \in H \mid |ah|_p < p^{1-\gamma} \} \right| \le \epsilon |H|, \quad a \in \mathbb{F}_p^*,$$

where $|x|_p$ means the unique nonnegative integer less than p/2 congruent to |x| modulo p.

We will show that for any integer $r \in (1, p - 1)$

$$S_r = \Big| \sum_{h \in H} \sum_{z \in I} e_p (rf(z)h) \Big| \le \epsilon |I||H|.$$

We also assume that $|I| \geq p^{\delta}$. As settled by Bourgain in [2], for f(z) = z + v, we have

(3)
$$S_r \le \sum_{h \in H} \Big| \sum_{z \in I} e_p(rzh) \Big| \le \sum_{h \in H} \min(|I|, ||arh/p||^{-1}) \le |I|N(H, \delta) + p^{\gamma}N \le 2\epsilon |I||H|,$$

if one chooses $\gamma \leq \delta/2$ and if p is large enough.

For a general non constant polynomial $f(x) \in \mathbb{Z}[x]$, we prove a more general result:

This statement plainly implies the desired result.

In order to prove it we argue by induction on $k \geq 1$. For k = 1, we have just to generalize Bourgain's bound obtained in (3) to *dense* subset of a subgroup and to show that this bound is uniform in $r \in \mathbb{F}_p^*$. It is done in a straightforward way.

Assume now that the property holds for some $k \geq 1$. Let f be of degree k+1. By letting

$$S(h) = \sum_{z} e_p(hf(z)),$$

we have

$$\sum_{h \in H} |S(h)|^2 = \sum_{h \in H} \sum_{x,y \in I} e_p(h(f(x) - f(y))) \le |H||I| + 2\sum_{z \in I} \Big| \sum_{h \in H} \sum_{y \in I} e_p(hg_z(y)) \Big|,$$

where $g_z(y) := f(y+z) - f(y)$ is a polynomial of degree k. By the induction hypothesis, we get

$$\sum_{h \in H} |S(h)|^2 \le 3\epsilon |H||I|^2.$$

Thus the set

$$H' := \{ h \in H \mid |S(h)| > \epsilon^{1/3} |I| \}$$

has cardinality satisfying

$$\epsilon^{2/3} |H'| |I|^2 < 3\epsilon |H| |I|^2$$

yielding $|H'| < \epsilon^{1/3}|H|$. It follows that

$$\left| \sum_{h \in H} S(h) \right| \le \sum_{h \in H'} |S(h)| + \sum_{h \in H \setminus H'} |S(h)|$$

$$\le |H'||I| + |H|\epsilon^{1/3}|I| \le 4\epsilon^{1/3}|I||H|.$$

The result is proved.

We can derive from the proof that Proposition 1 holds uniformly for any polynomial of degree less than $k(\epsilon) = \frac{\log \log(1/\epsilon)}{\log 3}$.

3. Extension to approximate multiplicative subgroups

We recall that an approximate subgroup of \mathbb{F}_p^* is any subset H of \mathbb{F}_p^* such that $|H \cdot H| < 2|H|$. By Kneser's Theorem, we get the following structure for such a subset:

Lemma 2. Let $\eta > 0$ and $H \subset \mathbb{F}_p^*$. If $|H \cdot H| < (2-\eta)|H|$, then there exist a positive integer $m \leq 1/\eta$, a subgroup H^* of \mathbb{F}_p^* and $u_1, \ldots, u_m \in H$ such that

$$H \subset \bigcup_{i=1}^{m} u_i H^*.$$

and

$$\frac{|H|}{m} \le |H^*| \le \frac{2-\eta}{2m-1}|H|.$$

We can now generalize Bourgain's result to approximate subgroup multiplying by the image of an interval by a polynomial.

Theorem 3. Let H be an approximate subgroup of \mathbb{F}_p^* with size larger than polylogarithmic in p and f be a polynomial. Then for any interval I in \mathbb{F}_p of size p^{δ} , $f(I) \cdot H$ is equidistributed modulo p as p tends to infinity.

Let $\epsilon, \delta, \eta > 0$ be positive real numbers and k be a positive integer. We assume that $|H \cdot H| \leq (2 - \eta)|H|$ and $|H| > (\log p)^B/\eta$ where $B = A(k, \epsilon \eta, \epsilon, \delta)$ is defined in Proposition 1. By the previous lemma, we may write

$$H = \bigcup_{i=1}^{m} H_i$$

where $H_i = u_i H^* \cap H$, i = 1, ..., m. Let

$$\Lambda = \{ i \le m \mid |H_i| \le \epsilon |H^*|/m \},$$

and $\Lambda' = \{1, 2, \dots, m\} \setminus \Lambda$.

For $j \in \Lambda'$, we have both $|H_j| > \epsilon |H^*|/m \ge \epsilon \eta |H^*|$ and $|H^*| \ge |H|/m > (\log p)^B$. Since Proposition 1 holds for cosets of a multiplicative subgroup as well, we obtain

$$\left| \sum_{h \in H} \sum_{z \in I} e_p(hf(z)) \right| \le \sum_{i=1}^m \left| \sum_{h \in H_i} \sum_{z \in I} e_p(hf(z)) \right|$$

$$\le \sum_{i \in \Lambda} |H_i| |I| + \sum_{i \in \Lambda'} \epsilon |I| |H_i|$$

$$\le \epsilon |\Lambda| |I| |H^*| + \epsilon |I| |H| \le 3\epsilon |I| |H|.$$

4. Remarks

It is worth mentioning that a close question related to multiplicative subgroups of \mathbb{F}_p^* can be considered: does the equation a+b=h, $(a,b,h)\in A\times B\times H$ be solvable for any subsets A,B of \mathbb{F}_p and any subgroup of \mathbb{F}_p^* ? Of course, A,B and H must be large enough in terms of p. This type of question takes its origin in [7] and has been hugely investigated since (see e.g. [9], [8] and [6]).

By the use of Fourier analysis in \mathbb{F}_p^* with ingredients of [9] (see also [8]), it can be shown that it is the case if

(4)
$$|A| > p^{\epsilon}, \quad |B| > p^{1/2+\epsilon}, \quad |H| > p^{1-\delta},$$

where $\delta = \delta(\epsilon) > 0$. The proof runs as follows. The number of solutions of the equation a + b = h is equal to

$$N = \frac{|A||B||H|}{p-1} + \frac{1}{p-1} \sum_{r=1}^{p-2} \sum_{(a,b) \in A \times B} \chi_r(a+b) \sum_{h \in H} \overline{\chi_r}(h),$$

where χ_r denotes the multiplicative character modulo p defined by

$$\chi_r(x) = \exp\left(\frac{2\pi i r \operatorname{ord}(x)}{p-1}\right),$$

and $\operatorname{ord}(x)$ denotes the discrete logarithm of x in base g for some fixed primitive root g modulo p. The summation on h is |H| or 0 according to the fact that r divides |H| or not. Hence

$$N = \frac{|A||B||H|}{p-1} + \frac{|H|}{p-1} \sum_{s=1}^{(p-1)/|H|-1} \sum_{(a,b)\in A\times B} \chi_{s|H|}(a+b).$$

By Shparlinski's result (cf. eq. 14 in [9]), the summation on (a, b) is $O(|A||B|p^{-\delta'})$ for any s, hence N > 0 by (4) if we consider $\delta < \delta'$ and p sufficiently large.

The same result with a stronger assumption on |A| and |B| and by relaxing the one on |H| is a consequence of the corollary to Theorem 2.4 of [5]:

$$a+b=h$$
 is solvable if $|A||B|>p^{2-\epsilon}$, $|H|>p^{1/3+\delta}$,

where $\epsilon \to 0$ as $\delta \to 0$.

References

- [1] Bourgain, J.; Mordell's exponential sum estimate revisited. J. Amer. Math. Soc. 18 (2005), no. 2, 477–499.
- [2] Bourgain, J.; On the distribution of the residues of small multiplicative subgroups of \mathbb{F}_p . Israel J. of Math. 172 (2009), 61–74.
- [3] Bourgain, J.; Glibichuk, A.; Konyagin S.; Estimate for the number of sums and products and for exponential sums in fields of prime order. *J. London Math. Soc.* **73** (2006), 380–398.
- [4] Chang M.-C.; Some problems in combinatorial number theory. *Integers* 8 (2008), no. 2, A1, 11 pp.
- [5] Hegyvári N.; Some remarks on multilinear sums and their applications. Preprint, 2010.
- [6] Hegyvári N.; Hennecart F.; Explicit construction of extractors and expanders, Acta Arith. 140 (2009), 233–249.
- [7] Sárközy, A.; On sums and products of residues modulo p. Acta Arith. 118 (2005), 403–409.
- [8] Shkredov I.D., On monochromatic solutions of some non linear equations, preprint (2009).
- [9] Shparlinski, I.E.; On the solvability of bilinear equations in finite fields. *Glasg. Math. J.* **50** (2008), no. 3, 523–529.

Norbert Hegyvári, ELTE TTK, Eötvös University, Institute of Mathematics, H-1117 Pázmány st. 1/c, Budapest, Hungary

E-mail address: hegyvari@elte.hu

François Hennecart, PRES Université de Lyon, Université Jean-Monnet, Laboratoire de mathématiques de l'Université de Saint-Étienne 23, rue Michelon, 42023 Saint-Étienne, France

E-mail address: francois.hennecart@univ-st-etienne.fr