
DISTRIBUTION OF RESIDUES IN APPROXIMATE SUBGROUPS OF F∗p
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Abstract. We extend a result due to Bourgain on the uniform distribution of residues by

proving that subsets of the type f(I) ·H is equidistributed (as p tends to infinity) where f

is a polynomial, I is an interval of Fp and H is an approximate subgroup of F∗p with size

larger than polylogarithmic in p.

1. Introduction

For any prime number p, we denote by Fp the finite fields with p elements, and let F∗p =

Fp r {0}. Let ε > 0. We say that a subset H of Fp is ε-equidistributed modulo p if for any

interval J of Fp, we have ∣∣∣ |H ∩ J |
|H| − |J |

p

∣∣∣ < ε.

Using the Weyl criterion, ε-equidistribution modulo p follows from the following bound on

trigonometric sums

(1) max
a∈Z
p - a

∣∣∣
∑

h∈H

ep(ah)
∣∣∣ < ε′|H|,

for some ε′ > 0 (depending on ε). Here we wrote ep(x) for e2πix/p.

Let H be a (multiplicative) subgroup of F∗p. In [3], it is shown that if

|H| > p(log log p)−c

where c is an explicit positive constant then (1) holds true if p is large enough.

In another direction, Bourgain considered in [1] the question of the distribution of the

values taken by a sparse polynomial formed by monomials wich are, in some sense, sufficiently

independent: for a1, . . . , ad ∈ F∗p,

gcd(ki, p− 1), gcd(ki − kj, p− 1) < p1−γ =⇒
∣∣∣

p∑
x=1

ep(a1x
k1 + · · ·+ adx

kd)
∣∣∣ < p1−δ,

where δ = δ(γ) > 0.
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Bourgain also investigated in [2] a mixed question and showed that I · H := {xh | x ∈
I, h ∈ H} is ε-equidistributed modulo p if I is an interval of Fp of size ≥ pδ and H is a

subgroup of F∗p such that |H| > (log p)A for some large A depending on the positive real

numbers ε and δ. It means that I ·H becomes equidistributed when p tends to infinity if one

assumes more precisely that

log |H|
log log p

→∞.

In Section 2, we combine these two Bourgain’s statement and obtain a result (cf. Propo-

sition 1) on equidistribution for sets f(I) ·H where H is a subgroup of F∗p, I is an interval

of Fp, |I| ≥ pδ and f is a non constant polynomial.

We say that a subset of Fp∗ is an approximate subgroup if |H · H| < 2|H|. It is not

difficult to see that Bourgain-Glibichuk-Konyagin’s result (cf. [3]) quoted above can be easily

extended to approximate subgroup. In section 3, we show our main result (cf. Theorem 3)

by extending Proposition 1 to the case where H is an approximate subgroup.

In the last section, we investigate the question of the existence of residues of a given small

subgroup of F∗p in the sumset A + B for two arbitrary subsets of Fp.

We stress the fact that Bourgain’s condition on the polylogarithm size of H is essential in

our proofs. By taking p = 2q − 1 a Mersenne prime, we can observe that the multiplicative

subgroup H generated by 2 has order ≥ log p. Nevertheless, H is not ε-distributed modulo p

since H∩((p+1)/2, p) = ∅. Moreover, if I is the interval (1, 2δq) in F∗p with 0 < δ < 1/2, then

I · {2j, 0 ≤ j ≤ (1− δ)q − 1} ⊂ (0, (p + 1)/2). This implies that |(I ·H) ∩ ((p + 1)/2, p)| ≤
2δq|I| = o(|I||H|), thus I · H is not ε-equidistributed when p is large enough (assuming

the Lenstra-Pomerance-Wagstaff conjecture which asserts that there are infinitely many

Mersenne primes).

These questions are related to results and problems quoted in [4].

In order to prove our results, we will argue by induction on the degree of f , on the back

of Bourgain’s result, using a squaring operation on trignometric sums and Kneser’s theorem

on the structure of small doubling sets in Abelian groups.

2. A result of asymptotic equidistribution for subgroups of F∗p

Here we prove

Proposition 1. Let k be positive integer, c be a positive real number and ε, δ ∈ (0, 1] be

real numbers. Then there exist p0 = p0(k, c, ε, δ), A = A(k, c, ε, δ) such that for any prime

p ≥ p0, any subgroup H∗ of F∗p with |H∗| > (log p)A, any u ∈ F∗p, any subset H of uH∗ with
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|H| > c|H∗|, any interval I ⊂ Fp with |I| ≥ pδ and any f(x) ∈ Fp[x] with deg f = k, one

has ∣∣∣
∑

h∈H

∑
z∈I

ep

(
hf(z)

)∣∣∣ ≤ ε|H||I|.

Let H be a (multiplicative) subgroup of F∗p and I be an interval of Fp, that is

I = {ax + b (mod p) | 0 ≤ x ≤ |I| − 1},

for some a ∈ F∗p and b ∈ Fp. We also fix a polynomial f of degree ≥ 1. We are wandering

the question of equidistribution modulo p as p to infinity of

f(I) ·H := {f(z)h | z ∈ I, h ∈ H}.

In order to use Bourgain’s result on the distribution of gn modulo p, n ≥ 0, where g ∈ F∗p,
we assume a polylogarithmic size in p for |H|, that is

log |H|
log log p

> A,

where A is a computable large constant. Under this condition, one has for any real number

γ > 0 and any sufficiently large prime number p,

(2) N(H, γ) :=
∣∣{h ∈ H | |ah|p < p1−γ}

∣∣ ≤ ε|H|, a ∈ F∗p,

where |x|p means the unique nonnegative integer less than p/2 congruent to |x| modulo p.

We will show that for any integer r ∈ (1, p− 1)

Sr =
∣∣∣
∑

h∈H

∑
z∈I

ep

(
rf(z)h

)∣∣∣ ≤ ε|I||H|.

We also assume that |I| ≥ pδ. As settled by Bourgain in [2], for f(z) = z + v, we have

(3) Sr ≤
∑

h∈H

∣∣∣
∑
z∈I

ep

(
rzh

)∣∣∣ ≤
∑

h∈H

min(|I|, ‖arh/p‖−1) ≤ |I|N(H, δ) + pγN ≤ 2ε|I||H|,

if one chooses γ ≤ δ/2 and if p is large enough.

For a general non constant polynomial f(x) ∈ Z[x], we prove a more general result:

This statement plainly implies the desired result.

In order to prove it we argue by induction on k ≥ 1. For k = 1, we have just to generalize

Bourgain’s bound obtained in (3) to dense subset of a subgroup and to show that this bound

is uniform in r ∈ F∗p. It is done in a straightforward way.

Assume now that the property holds for some k ≥ 1. Let f be of degree k + 1. By letting

S(h) =
∑
z∈I

ep(hf(z)),
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we have

∑

h∈H

|S(h)|2 =
∑

h∈H

∑
x,y∈I

ep(h(f(x)− f(y))) ≤ |H||I|+ 2
∑
z∈I

∣∣∣
∑

h∈H

∑
y∈I

ep(hgz(y))
∣∣∣,

where gz(y) := f(y + z)− f(y) is a polynomial of degree k. By the induction hypothesis, we

get ∑

h∈H

|S(h)|2 ≤ 3ε|H||I|2.

Thus the set

H ′ := {h ∈ H | |S(h)| > ε1/3|I|}
has cardinality satisfying

ε2/3|H ′||I|2 < 3ε|H||I|2,
yielding |H ′| < ε1/3|H|. It follows that

∣∣∣
∑

h∈H

S(h)
∣∣∣ ≤

∑

h∈H′
|S(h)|+

∑

h∈HrH′
|S(h)|

≤ |H ′||I|+ |H|ε1/3|I| ≤ 4ε1/3|I||H|.

The result is proved.

We can derive from the proof that Proposition 1 holds uniformly for any polynomial of

degree less than k(ε) = log log(1/ε)
log 3

.

3. Extension to approximate multiplicative subgroups

We recall that an approximate subgroup of F∗p is any subset H of F∗p such that |H ·H| <
2|H|. By Kneser’s Theorem, we get the following structure for such a subset:

Lemma 2. Let η > 0 and H ⊂ F∗p. If |H ·H| < (2−η)|H|, then there exist a positive integer

m ≤ 1/η, a subgroup H∗ of F∗p and u1, . . . , um ∈ H such that

H ⊂
m⋃

i=1

uiH
∗.

and
|H|
m

≤ |H∗| ≤ 2− η

2m− 1
|H|.

We can now generalize Bourgain’s result to approximate subgroup multiplying by the

image of an interval by a polynomial.

Theorem 3. Let H be an approximate subgroup of F∗p with size larger than polylogarithmic

in p and f be a polynomial. Then for any interval I in Fp of size pδ, f(I)·H is equidistributed

modulo p as p tends to infinity.
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Let ε, δ, η > 0 be positive real numbers and k be a positive integer. We assume that

|H ·H| ≤ (2− η)|H| and |H| > (log p)B/η where B = A(k, εη, ε, δ) is defined in Proposition

1. By the previous lemma, we may write

H =
m⋃

i=1

Hi

where Hi = uiH
∗ ∩H, i = 1, . . . ,m. Let

Λ = {i ≤ m | |Hi| ≤ ε|H∗|/m},

and Λ′ = {1, 2, . . . ,m}r Λ.

For j ∈ Λ′, we have both |Hj| > ε|H∗|/m ≥ εη|H∗| and |H∗| ≥ |H|/m > (log p)B. Since

Proposition 1 holds for cosets of a multiplicative subgroup as well, we obtain

∣∣∣
∑

h∈H

∑
z∈I

ep

(
hf(z)

)∣∣∣ ≤
m∑

i=1

∣∣∣
∑

h∈Hi

∑
z∈I

ep

(
hf(z)

)∣∣∣

≤
∑
i∈Λ

|Hi||I|+
∑

i∈Λ′
ε|I||Hi|

≤ ε|Λ||I||H∗|+ ε|I||H| ≤ 3ε|I||H|.

4. Remarks

It is worth mentioning that a close question related to multiplicative subgroups of F∗p can

be considered: does the equation a+ b = h, (a, b, h) ∈ A×B×H be solvable for any subsets

A,B of Fp and any subgroup of F∗p ? Of course, A,B and H must be large enough in terms

of p. This type of question takes its origin in [7] and has been hugely investigated since (see

e.g. [9], [8] and [6]).

By the use of Fourier analysis in F∗p with ingredients of [9] (see also [8]), it can be shown

that it is the case if

(4) |A| > pε, |B| > p1/2+ε, |H| > p1−δ,

where δ = δ(ε) > 0. The proof runs as follows. The number of solutions of the equation

a + b = h is equal to

N =
|A||B||H|

p− 1
+

1

p− 1

p−2∑
r=1

∑

(a,b)∈A×B

χr(a + b)
∑

h∈H

χr(h),

where χr denotes the multiplicative character modulo p defined by

χr(x) = exp

(
2πir ord(x)

p− 1

)
,
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and ord(x) denotes the discrete logarithm of x in base g for some fixed primitive root g

modulo p. The summation on h is |H| or 0 according to the fact that r divides |H| or not.

Hence

N =
|A||B||H|

p− 1
+

|H|
p− 1

(p−1)/|H|−1∑
s=1

∑

(a,b)∈A×B

χs|H|(a + b).

By Shparlinski’s result (cf. eq. 14 in [9]), the summation on (a, b) is O(|A||B|p−δ′) for any

s, hence N > 0 by (4) if we consider δ < δ′ and p sufficiently large.

The same result with a stronger assumption on |A| and |B| and by relaxing the one on

|H| is a consequence of the corollary to Theorem 2.4 of [5]:

a + b = h is solvable if |A||B| > p2−ε, |H| > p1/3+δ,

where ε → 0 as δ → 0.
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[6] Hegyvári N.; Hennecart F.; Explicit construction of extractors and expanders, Acta Arith. 140 (2009),

233–249.
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France

E-mail address: francois.hennecart@univ-st-etienne.fr


